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Abstract: - Circular and annular domains of hydroacoustic vibration are very common in modern 
technology due to their simplicity. On the other hand it turns out that such a shape possesses remarkable 
vibration properties. It is determined that there are two classes of resonant rotating waves, predominantly 
tangential and predominantly radial, in terms of prevalence of tangential or radial components of the 
vectors of vibrational velocities and displacements. The complete map of resonant angular velocities 
shows that all predominantly tangential angular velocities for all values of ring thickness are assembled 
into the self-isolating unique single low-frequency branch, whereas predominantly radial ones fill the 
entire high-frequency region very densely. 
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1 Introduction 
In production of nano- and ultra-disperse 
inorganic powders from aqueous and non-
aqueous solutions the so-called wet chemical 
methods are extensively distributed currently. 
The term "wet chemical methods" by itself has 
been deeply embedded into nanotechnology in 
order to emphasize the difference of these 
technique class from the ordinary solid-state 
methods of synthesizing compounds and 
materials, due to its principal feature: usage of a 
liquid phase at one of the process steps. The 
favorable distinctions of the wet chemistry 
products from analogous products of solid phase 
synthesis are substantially smaller grain or 
crystallite size and, as a rule, lower temperature 
and shorter duration of phase formation of 
multicomponent compounds. There are a lot of 
processes using a liquid phase. They are, for 
instance: liquid phase sol-gel process, 
hydrothermal synthesis, Pechini method, spray 
drying, aerosol spray pyrolysis, cryochemical 
synthesis and others [1]. Vibration technologies 
traditionally play an increasingly important part 
in manufacturing industry [2]. Usage of 
vibration in resonant regimes, providing optimal 
conditions for pumping and accumulation of 
vibrational energy, is especially effective. 
Resonant regimes are essencially favorable for 
hydroacoustic systems, since their working 

media – compressible gases or liquids, – do not 
suffer from prolonged intense loads, in contrast 
to solids subject to destruction. At resonance 
optimal conditions are created for pumping the 
energy of an external source into a mechanical 
oscillatory system with distributed parameters, 
because the vibrational velocities and pressures 
in the working medium become in-phase. So 
resonant dispersants and homogenizers are just 
the devices that should be widely used in the 
modern nanotechnology. A continuous steady-
state mode of operation is most effectively 
implemented with rotational movement. That is 
why the research of resonant rotating waves is of 
the primary practical importance. 
 
 

2 Maps of dimensionless natural 
frequencies of hydroacoustic 
oscillations in a ring domain 
The discrete spectrum of the dimensionless 
natural frequencies of acoustic oscillations 
ω ik R/c, where R – the outer radius of the 

annular domain and c is the speed of sound of 
the gaseous or compressible fluid medium filling 
it, as a function of the ratio of the inner radius of 
the circular region to the outer radius ρ, 0 ≤ρ <1, 
is determined by the relations: 
ω ik R/c = α ik (ρ),                                      (1) 
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where 
α ik (ρ)  the i-th root of the transcendental 

equation: 
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J '
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k (αρ)  are the derivatives of the k-th 

order Bessel and Neumann functions, 
respectively. 

For the functions ω ik (ρ), α ik (ρ), the first 

index i denotes the ordinal number by increasing 
the root of equation (2) for a given value of k, 
whereas the second index k is the number of the 
nodal diameters of the eigenmode of the 

oscillations corresponding to the eigenfrequency 
ω ik . The indicated indices take the values: i = 1, 

2, 3,...; k = 0, 1, 2, 3,..., where k = 0 corresponds 
to an axisymmetric, or circumferentially node-
free natural form of vibrations, and k = 1, 2, 3, ... 
– to a non-axisymmetric having nodal diameters 
eigenmodes. 

All eigenfrequencies are shown in Fig. 
4-7, while the lower ones, i = 1, non-
axisymmetric with successively increasing 
number of nodal diameters, k = 1, 2, 3,..., 
predominantly tangential vibration eigenmodes, 
excited in resonant devices, for ρ = .7, – in Fig. 
8. 

 

Figure 1. Small scale eigenfrequency map. 
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Figure 2. Medium scale eigenfrequency map. 
 
 

Figure 3. Large scale eigenfrequency map. 
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Figure 4. Eigenfrequencies referred to the fundamental frequency. 

 

A comprehensive representation of the 
spectrum of natural frequencies of oscillations of 
an arbitrary thickness concentric region 0 <ρ <1, 
up to high-frequency ones, is provided with the 
complete map of natural frequencies (Fig. 1). It 
shows that two classes of natural oscillations are 
distinguished - predominantly tangential and 
predominantly radial, in terms of prevalence of 
the tangential or radial components of the 
vibrational velocity vectors. 

The first class is formed by regular 
weakly decreasing with decreasing ρ almost 
horizontal curves, at ρ1 forming a strictly 
harmonic sequence in eigenfrequencies: 1, 2, 3, 
..., k,… where k is a natural number. These are 
predominantly tangential vibrations without 
nodal circles, with a successively increasing 
number k of nodal diameters. 

The second class is formed with 
predominantly radial vibrations. On the full 
natural frequency map (Fig. 1), it forms the 
series of "decreasing cluster families", each of 
which is bounded to the right by asymptotic 
curves. Each of these asymptotes corresponds to 
axisymmetric oscillations. The rightmost 
asymptote represents vibrations without nodal 
circles, the next to the left – with one nodal 
circle, and so on, with the addition of exactly 
one nodal circle when moving to the left on the 
map. 

To analyze the composition of families 
of predominantly radial oscillations, it is 
necessary to turn to a larger-scale mid-frequency 
eigenfrequency map (Fig. 2). It can be seen how 
the frequency curves differing by successive 
addition of the next nodal diameter in the 
corresponding natural form of acoustic 
oscillations are successively adjacent to the left 
of each asymptote of the family. 

And, finally, the low-frequency map of 
the natural frequencies of oscillations has the 
utmost significance for solution of the 
investigated problem (Fig. 3). 

It exactly shows that with increasing 
angular velocity ω of the rotating acoustic load, 
this perturbation primarily excites the low-
frequency predominantly tangential eigenmodes, 
located on the frequency map in the lower right-
hand region corresponding to the real relative 
dimensions ρ of the annular region. In this case, 
the exact equality for the dimensionless natural 
frequencies of the compressible gas in a resonant 
chamber is fulfilled for ρ1: ω ik R/c=k, where 

i = 1; k is a natural number having the physical 
meaning of the number of nodal diameters of the 
natural form of predominantly tangential 
oscillations (Fig. 5). The natural frequencies 
ω k1  by themselves, related to the basic tone 

frequency ω 11 , that is, ω k1 /ω 11 , form a strict 
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natural sequence for sufficiently large values of 
ρ (Fig. 4). Thus, Fig. 4 shows that for 0.7 <ρ <1 

this natural sequence is satisfied for the eight 
lowest eigenfrequencies. 

  

  

  

  

Figure 5. Predominantly tangential hydroacoustic vibration eigenmodes. 
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Summing up the discussion of 

eigenfrequency maps (Fig. 1-4) and eigenmode 
diagrams (Fig. 5) of acoustic oscillations of 
annular chambers, we summarize that for large 
values of ρ, corresponding to the real 
dimensions of the chamber, predominantly 
tangential low frequency oscillations with nodal 
diameters only are located, whereas in the 
regions of small ρ, high-frequency 
predominantly radial acoustic oscillations with 
nodal circles also appear. Just predominantly 
tangential vibrations are used to generate 
rotating acoustic waves in the resonant device 
[3]. 

 
 

2 Distinctive feature of circular 
geometric shape of a resonant 
chamber 
Each non-axisymmetric eigenmode A(r) coskθ, 
k = 1, 2, 3, ... (Fig. 5) is a solution of the 
equation of free acoustic oscillations and is 
interpreted by the standing wave: 
A(r) coskθ cosω ik t,                                         (3) 

where r is the radial, θ is the angular coordinate, 
t is time, k is the number of nodal diameters, ω ik  

is the corresponding natural frequency of 
oscillations. The distinguishing feature of the 
circular geometric shape of a resonant chamber 
is that all eigenfrequencies are doubly 
degenerate, i.e. each natural oscillation 
frequency ω ik , in addition to (3), corresponds to 

another non-axisymmetric eigenmode of 
oscillations A (r)sinkθ, also interpreted by the 
standing wave: 
A(r) sinkθ sinω ik t.                                         (4) 

Standing waves are characterized by the 
fact that their nodal diameters are fixed, which is 
evident from (3, 4). But since the original 
equation of free acoustic oscillations is linear, 
the sum and difference of its solutions in the 
form of standing waves (3, 4) are also its 
solutions. These solutions will accordingly be: 
A(r) (coskθ cos ω ik t + sinkθ sin ω ik t) = A(r) 

cos(kθ – ω ik t) = A(r) cosk(θ – ω ik /k t), 

A(r) (coskθ cos ω ik t – sinkθ sin ω ik t) = A(r) 

cos(kθ + ω ik t) = A(r) cosk(θ + ω ik /k t). 

The expressions obtained are interpreted 
already by rotating waves, which are a particular 
case of traveling waves for bodies with cyclic 
symmetry. They are characterized in that their 
nodal diameters, just like natural forms itself at 

all (spatial amplitudes of vibrational 
displacements, velocities, pressures, etc.), rotate 
with their natural angular velocity ω ik /k, at that 

in the counter directions. The first expression 
describes the rotation of the natural wave in the 
direction of increasing the angle θ, while the 
second expression – in the opposite direction. 
We come therefore to the concept of a rotating 
resonant wave excited with an external rotating 
load, whose angular velocity ω approaches its 
natural angular velocity ω ik /k. The forced wave 

rotation direction is given by the direction of 
rotation ω of the external load. 

 
 

3 Maps of dimensionless resonant 
angular velocities of hydroacoustic 
oscillations in a ring domain 
Thus, the circular shape of the geometric domain 
of an acoustic resonator provides a double 
multiplicity of its eigenfrequencies, i.e. each 
natural frequency ω ik  corresponds to the pair of 

eigenmodes, shifted along the angular 
coordinate by π/2/k. Their superposition just 
gives a rotating natural form of vibration with its 
natural angular velocity ω ik /k, which is excited 

by an external load rotating with the same 
angular velocity ω at the resonant mode of 
operation of the device. 

Therefore, maps of dimensionless 
resonant angular velocities ω ik /kR/c as a 

function of ρ, 0 ≤ρ <1 (Fig. 6-9) are of 
fundamental importance. Note that the 
introduction of the relative resonant angular 
velocity ω ik /kR/c unifies the solution for any 

radii of circular concentric domains and working 
media within them by reducing the number of 
dimensional variables and giving an universal 
character to the above-mentioned maps. In the 
theory of similarity, which is the basis of 
modeling, the dimensionless quantities ρ and 
ω ik /kR/c are called similarity criteria, namely, ρ 

is the geometric similarity criterion and 
ω ik /kR/c is the physical similarity criterion for 

homochronicity known as the Strouhal number. 
The equality of all the same criteria of similarity 
for any system that obeys a particular physical 
phenomenon is a necessary and sufficient 
condition for the physical similarity of these 
systems [4]. This is what determines the 
universality of the maps of resonant angular 
velocities.  
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The complete map of resonant angular 
velocities (Fig. 6) shows that: 

1. The exact equality is performed for all 
dimensionless predominantly tangential angular 
velocities of the rotating waves in the resonance 
chamber at ρ1: ω ik /kR/c = 1, where i = 1; k 

is a natural number having the physical meaning 
of the number of nodal diameters of the proper 
form of predominantly tangential oscillations 
(Fig. 5). 

2. All predominantly tangential 
velocities ω ik /kR/c, i = 1; k = 1, 2, 3, ... for all 

values of ρ, 0 <ρ <1 are assembled into a self-
isolating single low-frequency branch, at which 
the device operates, whereas the predominantly 
radial velocities fill the entire high-frequency 
region very much densely. 

To fine tune the device to the family of 
predominantly tangential resonant waves, it is 
necessary to refer to a larger scale midrange map 
(Fig. 7). It shows that the low-frequency branch 
of the predominantly tangential angular 
velocities of the rotating waves ω ik /kR/c, i = 1; 

k = 1, 2, 3, ... for small values of ρ splits into a 
dense bundle of nearby curves for different 
numbers of nodal diameters k, whose density 
increases with increasing ρ, merging into a 
single line as ρ increases further. Wherein the 
curve ω k1 /kR/c at k = 1 bounds from above a 

family of predominantly tangential rotating 
resonant waves which are successively adjacent 
to it, decreasing with further growth of k, i.e. 
with sequential addition of the next nodal 

diameter in the corresponding rotating natural 
form. 

Finally, low-frequency maps of rotating 
resonant waves give a detailed representation of 
the problem under investigation (Fig. 8). They 
show that the thinner the thickness of the 
annular resonator chamber, the higher the 
density of its natural angular velocities ω k1 /kR/c 

and the greater the number of them that enters 
the near-resonance region when the chamber is 
excited by an external rotating acoustic wave 
with an angular velocity equal to ω 11 /kR/c. All 
natural angular velocities form a beam of rays 
radiating from a point on the map with 
coordinates: ρ = 1, ω ik /kR/c=1 in the direction 

of decreasing abscissa ρ. With decreasing k, the 
velocities ω ik /kR/c increase. For k = 8, 7,   1 the 

cone of rays converging in the region of thin 
thicknesses of the resonator chamber is depicted 
in Fig. 9. The main conclusion from the analysis 
of resonant rotating waves is that absolutely all 
natural angular velocities for predominantly 
tangential waves ω ik /kR/c, i = 1; k = 1, 2, 3, ... 

fall into the near-resonant area with a single 
unique resonance center ω ik /kR/c=1. Fig. 9 

presents this unique feature in details. 
Consequently, there exists an unique angular 
velocity of the external acoustic load, which is a 
characteristic of the geometrical and physical 
parameters of the device, causing a simultaneous 
resonance of all predominantly tangential natural 
rotating waves. 
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Figure 6. Small scale resonant angular velocity map. 
 
 

Figure 7. Medium scale resonant angular velocity map. 
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Figure 8. Large scale resonant angular velocity map. 
 
 

Figure 9. Resonant angular velocities for an annular domain. 
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6 Conclusions 
The use of ring resonators in nanotechnology is 
very beneficial due to the collection of all 
resonant rotating velocities into a single unique 
curve for all thickness values. Therefore, if the 
external load rotates with an angular velocity ω 
close to any natural angular velocity ω ik /k, then 

all resonant rotating waves are excited 
simultaneously. Thus, by tuning the angular 
velocity of the external rotating acoustic load to 
a single natural angular velocity, we 
automatically obtain a resonant excitation of all 
rotating natural forms. 
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